PAS 5308 Cable Part 2 Type 1 PVC-IS-OS-PVC

Application

These cables are designed to connect electrical instrumentation and communication systems in and around process plants and similar applications, Generally used to transmit analogue or digital signals in measurement and process control where chemicals may be present. The individual screening of each pair limits the consequence of crosstalk.

Construction

Conductor	Annealed copper, sizes: $0.5 \mathrm{~mm}^{2}$ and $0.75 \mathrm{~mm}^{2}$ mulitistranded(Class 5), $1.5 \mathrm{~mm}^{2}$ and $2.5 \mathrm{~mm}^{2}$ multistranded(Class 2) to BS EN 60228
Insulation	PVC to BS EN 50290-2-21:2002, grade TI51
Pairing	Two insulated conductors uniformly twisted together with a lay not exceeding 100 mm , Two-pair cables without individual pair screens (quads) shall have four cores laid in quad formation round a central dummy
Colour code	See technical information
Individual screen	Aluminium/polyester tape is applied over each pair metallic side down in contact with tinned copper drain wire, $0.5 \mathrm{~mm}^{2}$
Binder tape	Non-hygroscopic binder tape of minimum thickness 0.023 mm
Collective screen	Aluminium/polyester tape is applied over the laid up pairs metallic side down in contact with tinned copper drain wire, $0.5 \mathrm{~mm}^{2}$
Outer sheath	Extruded sheath of a PVC compound conforming to BS EN 50290-2-22:2002, grade TM51
Sheath colour	Generally black

Any inquiries, please feel free to contact kitty@caledonian-cables.com or kitty@caledonian-cables.co.uk

Electrical Properties

Temperature range: above $0^{\circ} \mathrm{C}$ (fixed installation)
$-15^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ (during operation)

Conductor Area Size	mm^{2}	0.5	0.5	1	1.5	2.5
Conductor Stranding	$\mathrm{No} x mm$.	1×0.8	16×0.2	1×1.13	7×0.53	7×0.67
Conductor resistance max	ohm/km	36.8	39.7	18.4	12.3	7.6
Insulation resistance minIndividual conductor individual screen	Gohm/km	5	5	5	5	5
Capacitance unbalance at 1 kHz(pair to pair screen)	$\mathrm{pF} / 250 \mathrm{~m}$			1	1	1
Max. Mutual Capacitance @ 1 kHz for Non OS or OS cables (except one-pair and two-pairs)	pF / m	75	75	75	85	105
Max. Mutual Capacitance @ 1 kHz IS/OS cables (include pair and 2 pair)	pF / m	115	115	115	120	140
Max. L/R Ratio for adjacent cores(Inductance/ Resistance)	$\mu \mathrm{H} / \mathrm{ohm}$	25	25	25	40	60
Test voltage	V	2000	2000	2000	2000	2000
Rated voltage	V	$300 / 500$	$300 / 500$	$300 / 500$	$300 / 500$	$300 / 500$

Parameter

Number of Pairs	Number and Diameter of Wires	Nominal Conductor Cross- Sectional Area	Nominal Thickness of Insulation	Nominal Thickness of Sheath	Nominal Diameter of Cable	
	no./mm	$\mathbf{m m}^{\mathbf{2}}$	$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{m m}$	
stranded conductor						$\mathbf{0 . 5} \mathbf{m m}^{\mathbf{2}} \mathbf{(1 6 / 0 . 2 0 m m)}$
2	$16 / 0.2$	0.5	0.6	0.9	9.7	
5	$16 / 0.2$	0.5	0.6	1	12.6	
10	$16 / 0.2$	0.5	0.6	1.2	18	
15	$16 / 0.2$	0.5	0.6	1.3	20.9	

Any inquiries, please feel free to contact kitty@caledonian-cables.com or kitty@caledonian-cables.co.uk

Number of Pairs	Number and Diameter of Wires	Nominal Conductor CrossSectional Area	Nominal Thickness of Insulation	Nominal Thickness of Sheath	Nominal Diameter of Cable
	no./mm	mm ${ }^{2}$	mm	mm	mm
20	16/0.2	0.5	0.6	1.4	23.6
30	16/0.2	0.5	0.6	1.6	28.2
50	16/0.2	0.5	0.6	1.8	36.1
stranded conductor $0.75 \mathrm{~mm}^{\mathbf{2}}$ (24/0.20mm)					

2	$24 / 0.2$	0.75	0.6	0.9	10.4
5	$24 / 0.2$	0.75	0.6	1	13.5
10	$24 / 0.2$	0.75	0.6	1.2	19.4
15	$24 / 0.2$	0.75	0.6	1.4	22.8
20	$24 / 0.2$	0.75	0.6	1.5	25.8
30	$24 / 0.2$	0.75	0.6	1.6	30.5
50	$24 / 0.2$	0.75	0.6	1.9	39.3

stranded conductor $\left.\mathbf{1 . 5} \mathbf{~ m m}^{\mathbf{2}} \mathbf{(7 / 0 . 5 3 m m}\right)$								
2	$7 / 0.53$	1.5	0.6	1	12.1			
5	$7 / 0.53$	1.5	0.6	1.1	15.8			
10	$7 / 0.53$	1.5	0.6	1.4	22.9			
15	$7 / 0.53$	1.5	0.6	1.5	26.6			
20	$7 / 0.53$	1.5	0.6	1.6	30.1			
30	$7 / 0.53$	1.5	0.6	1.8	35.8			
50	$7 / 0.53$	1.5	0.6	2.2	46.2			
	stranded conductor $\left.\mathbf{2 . 5} \mathbf{~ m m}^{\mathbf{2}} \mathbf{(7 / 0 . 6 7 m m}\right)$							
2	$7 / 0.67$	2.5	0.6	1	13.5			
5	$7 / 0.67$	2.5	0.6	1.2	17.9			
10	$7 / 0.67$	2.5	0.6	1.5	25.9			
15	$7 / 0.67$	2.5	0.6	1.6	30.1			
20	$7 / 0.67$	2.5	0.6	1.8	34.3			
30	$7 / 0.67$	2.5	0.6	2	40.8			
50	$7 / 0.67$	2.5	0.6	2.4	52.6			

